Multi-Topic
MTEC launched its first Multi-Topic Request for Project Proposals (RPP) in June 2017, which aimed to solicit white papers from prospective and current MTEC members. Although 40 specific areas of technical interest were included in the RPP, Offerors were invited to submit white papers on a broad range of medical technological solutions related to MTEC’s six technology focus areas. The Multi-Topic RPP mechanism operated as an “open door” between the MTEC community and the military, enabling the military to solicit solutions to specific problems, where the scientific community either meet those specified needs or recommended a solution to a different medical need with military relevance. The research project award recipients were selected from the Offerors who responded to MTEC’s Request for Project Proposals (17-08-MULTI-TOPIC).
Fast Onset Abdominal Management (F.O.A.M.) Preclinical Studies
Project Team: Critical Innovations
Award Amount: $8.34M
Project Duration: 53 months
Project Objective: Critical Innovations is developing Fast Onset Abdominal Management (F.O.A.M.)™, a life-saving technology to control intra-abdominal hemorrhage in the out-of-hospital, forward surgical, and prolonged field care environments. A recent review of U.S. battlefield deaths demonstrated that around 90% of all injury mortality occurred pre-medical facility, with the vast majority of potentially survivable deaths due to non-compressible abdominopelvic hemorrhage. American military experts have declared this “a clear and persistent gap in medical treatment capability that has been present for the entire history of warfare.” Severe intra-abdominal bleeding currently requires operative treatment by trained surgeons, while F.O.A.M.™ task-shifts to allow earlier abdominal hemostasis by a wider range of providers. The product is an easily transportable medical device that can be used by non-surgeon providers within the battle area, before or during medical evacuation. F.O.A.M.™ is field-adapted for long shelf life, resorbable by the body with minimal risk for complications, and easily removable if needed for subsequent surgery.
Under this MTEC award, Critical Innovations will perform the next phase of F.O.A.M.™ testing in a porcine, non-compressible hemorrhage model to determine optimal dosage range (for formulation, volume, and intra-abdominal pressure curve), as well as evaluate the product’s safety and identify potential side effects. Tasks include:
- Regulatory Advisement Letter production
- Maintenance of regulatory documentation and initiation of the FDA pre-submission guidance process
- Formulation of several F.O.A.M.™ variations for comparative testing
- Additional laboratory testing of F.O.A.M.™ deployment agent characteristics
- Optimization of delivery system device with proof-of-concept use in a porcine model-
- Small-batch testing of F.O.A.M.™ variations in a porcine, non-compressible hemorrhage model
Year One Accomplishments:
Completion of agent variation testing with selection of a final formulation
- Receipt of Breakthrough Device Designation from the FDA
- Low-volume device production for proof-of-concept studies
- Successful large-animal testing showing improved survival over historic controls
The F.O.A.M.™ technology is INVESTIGATIONAL and NOT AVAILABLE FOR COMMERCIAL SALE. These statements have not been evaluated by the Food and Drug Administration and the technology is not currently approved for human use
4TDS: Trauma Triage, Treatment and Training Decision Support
Project Team: Applied Research Associates
Award Amount: $3.93M
Project Duration: 30 months
Project Objective: The 4TDS system is intended to support the evaluation, training for, and treatment of trauma patients at risk of shock, which is a high-risk threat to patient health and a challenge to diagnose. To do this, the project will integrate two decision support systems to improve the quality and efficiency of clinician performance of combat casualty care: ARA’s Cooperative Communication System and Mayo Clinic/Ambient Clinical Analytics’ AWARE system. Patient-worn sensors will provide real-time data, and machine learning algorithms will identify shock type, to make more accurate timely care possible. 4TDS will be fielded on a Nett-Warrior tablet and evaluated in both Field Hospital (Role 3) and Battalion Aid Station (Role 2) settings. The system will enable clinicians in the field to: 1) Learn and refresh clinical decision-making skills through simulation; 2) Reliably identify and differentiate cases of shock in real time; 3) Decrease diagnostic/treatment error and delay, reduce provider cognitive load, and increase provider efficiency and satisfaction; and 4) Improve compliance with appropriate treatment bundles and clinical practice guidelines, improve team safety, efficiency and satisfaction, improve patient outcomes, and better utilize resources.
Year One Accomplishments:
- Completed design requirement reviews with 17 subject matter experts from the U.S. Army, Navy, and Air Force, with a combined average of 17 years of military service and 4 deployments.
- Collected and cleaned Mayo Clinic’s Electronic Health Record (HER) data consisting of 23,774 ICU admissions from 18,349 unique patients. Each ICU admission contains demographics, vital signs, lab results, fluids, flow events, and drugs for a total of 215,267,448 data points.
- Developed a predictive algorithm to detect shock using vital signs data. Testing showed the algorithm successfully predicted shock with 75% accuracy 2 hours before being clinically diagnosed, using less than 2 hours of vital signs data.
- Designed and programmed first generation smart phone user interface to present medic with vital signs data and shock probability indication
- Developed initial mobile application shock management training, and procedure guidance for cricothyrotomy.
A Realistic, Portable and Deployable Medical Patient Simulator Using Augmented Reality Technology for Mass Casualty Medical Response Training
Project Team: Chenega Healthcare Services
Award Amount: $0.75M
Project Duration: 13 months
Project Objective: Chenega Healthcare Services will create military-relevant trauma training modules to support tactical combat casualty care using MedCognition’s PerSim augmented reality patient simulator system. The training modules will emulate battlefield and mass casualty incident injuries with PerSim’s holographic simulation technology. The combat trauma education training modules will be developed over the next 12 months with the potential to be adopted by the US Military in the years to come.
PerSim is an augmented reality patient simulator system designed to provide dynamic realism in medical simulation training using Microsoft HoloLens® Mixed reality to project life-like holographic patients into actual work environments. PerSim allows participants to view realistic patient simulations with a number of clinical presentations including respiratory distress, stroke and minor trauma, and is currently used by pre-hospital training programs to strengthen critical thinking, decision-making and assessment skills of trainees. PerSim empowers educators and trainees to practice caring for critically ill patients, through hands on experience, in the actual environments where they deliver care. This contract further expands our capabilities into the realm of military medicine and battlefield care, with the hope that this experiential training opportunity could help save the lives of critically ill and injured soldiers.
Validation of Wearable Sleep and Fitness Monitor with the Sleep Tank Model
Project Team: Institutes for Behavior Resources
Award Amount: $0.24M
Project Duration: 36 months
Project Objective: The Institutes for Behavior Resources (IBR) has proposed to validate the usability of existing wrist‐worn devices along with a sleep debt algorithm for real‐time feedback in an operational environment. IBR will create and operationally test with the aid of partners an application, which supports the hardware and hosts SleepTank™, an intelligent system that considers the user’s entire sleep history to determine how long one can perform sufficiently before more sleep is needed. The project objective is to demonstrate that an off‐the‐shelf device with SleepTank™ increases the consistency of daily sleep in individuals working in an operational environment and demonstrate that feedback from SleepTank™ can change sleep behavior in individuals.
Development of an Oxygen Carrier for Use in Hemorrhagic Shock Resuscitation
Project Team: VirTech Bio
Award Amount: $4.62M (additional cost share = $913K)
Project Duration: 59 months
Project Objective: This proposal is intended to reduce the mortality and morbidity associated with blood loss due to combat‐related trauma in life‐threatening battle injuries and prolonged field care in pre‐hospital settings, including from point of injury and en route care. Our objective is to develop a new medical product to replace current standard of care. The idea is to sustain baseline oxygenation to the CNS and the central axis and heart, which would extend the “golden hour” and our ability to avoid prolonged hypotension and hypoxygenation in the service members experiencing massive combat casualties. This product was designed to improve biological efficiency over current standards of care. VIR‐IV1 is a new‐generation HBOC for early low‐volume intervention. The product is room‐temperature stable and universally compatibility, intended for use promptly once an intravenous line has been established by combat medics on the battlefield and during medical evacuation. VIR‐IV1 units are designed to be easily transportable, require no cross matching, refrigeration or special handling, and can be used immediately on demand to maintain circulatory volume and deliver oxygen for far‐forward deployment. Its hemoglobin content transports and delivers oxygen to be utilized for low‐volume resuscitation; its solution properties mimic those of packed red blood cell units to maintain fluid balance. It is also designed to be easily and cost‐effectively manufactured by a contract manufacturing organization (CMO) using standard modern techniques
A Clinical Trial Network for Adaptive & Comparative Testing of Trauma‐Related Therapeutics
Project Team: Cohen Veterans Bioscience
Award Amount: $2.16M (additional cost share = $4.05M)
Project Duration: 20 months
Project Objective: Post-traumatic stress disorder (PTSD) is a mental health condition that some people develop after experiencing or witnessing a violent or life-threatening event, such as combat, natural disaster, terrorist attack, or sexual assault. PTSD affects about 7.7 million American adults in a given year and is the fifth most prevalent mental disorder in the U.S. with higher rates observed in veterans. Cohen Veterans Bioscience (CVB) will lead this program and serve as a Clinical Coordinating Center (CCC) to establish a clinical trial infrastructure for comparative testing of efficacy and safety of pharmacotherapeutics via a well-powered adaptive platform trial (APT). This innovative design is the most expedient way to advance therapeutics for trauma-related disorders and to streamline the clinical trial process while reducing costs and enhancing the information gained and translated to the clinic. Such a network can test and compare the currently available and often prescribed therapeutics in a methodical and resource-efficient manner providing level A evidence to guide their use or discontinuation in PTSD. The APT will also incorporate extensive biomarker testing to identify and enable the validation of more precise diagnostics, biomarkers that can predict response to specific treatments, or biomarkers that could be used for stratifying patients in clinical trials. The ultimate objective of this program is to inform precision-medicine based clinical practice guidelines by generating high-quality comparative evidence of treatment effect by diagnosis.
Year One Accomplishments:
- Clinical Coordinating Center launched
- Joint Steering Committee including DOD, VA, FDA, NIMH, NIAAA, and CVB established
- External Consultative Board comprised of industrydrug development and clinical experts consulted to design innovative protocol for first adaptive platform study for PTSD with CVB leadership team
- Multiple Subject Matter Experts consulted to provide input on key design features and the clinical population
- CRObrought on board and Clinical site feasibility initiated
Anthropomorphic Blast Test Device Validation and Transition for Blast Over Pressure Health Hazzard Assessment
Project Team: L3 Applied Technologies
Award Amount: $0.53M (additional cost share = $0.33M)
Project Duration: 11 months
Project Objective: The objectives of this proposed work are: (1) Validate the use of the 24”-Blast Test Device (BTD) for use with Blast Overpressure Health Hazard Assessment (BOP-HHA) and develop correcting functions for the calculated doses against the 30”-BTD benchmark; (2) Update BOP-HHA to include the option of using the 24”-BTD and the revision of the risk matrix and risk assessment code (RAC) algorithm based on the latest guidelines and practices in collaboration with subject matter experts from the U.S. Army Public Health Command (USAPHC) and USAMRDC; and (3) Document all data and findings and transition BOP-HHA to USAPHC for future sustainment.
Development of AP-SA02: A Novel Bacteriophage Therapeutic for Targeted Treatment of Staphylococcus aureus Bacteremia, including Drug Resistant Forms
Project Team: Armata Pharmaceuticals
Award Amount: $15.00M (additional cost share = $7.78M)
Project Duration: 43 months
Project Objective: AP-SA02 is a safe and effective treatment for SAB and can improve Subject outcomes when used as an adjunct to antibiotics. The multiple dose escalation study design will assess the safety, tolerability and preliminary efficacy of 3 dose cohorts with phage PK, clinical signs and symptoms, microbial efficacy and all-cause mortality to identify a dose that offers the best potential therapeutic benefit in patients with complicated SAB. This project aligns with Department of Defense efforts to mitigate AMR in bacterial pathogens, such as S. aureus, and is relevant to the well-being and health care of wounded service members, especially those with combat trauma, which may lead to bacteremia, as well as the civilian population.
The Crucial Role of Volumetric Humans in Simulation, Info. Sciences, and Beyond
Project Team: 8i
Award Amount: $2.30M
Project Duration: 16 months
Project Objective: TCCC is a critical component of the combat medical process and is underlined by two particularly intractable problems: (1) there are numerous trainees and relatively few qualified trainers; and (2) TCCC is conducted at the point of injury, performed in the field under duress. Satisfactory outcomes of this effort can significantly improve a trainer’s ability to reach trainees and has the potential to improve training outcomes and improve overall force readiness. We believe that VR and AR experiences, utilizing that realism of 8i’s volumetric video, can do much to address both problems. First, pre-recorded and live volumetric video will allow the US Army to scale the presence of its trainers in an entirely innovative way. Their unique presence and instruction can be viewed over and over again by trainees as they drill on core concepts. Second, the trainer can remotely view the trainee in a fully immersive setting, providing real-time instruction, observation, and support. Third, VR and AR can be used to increase the level of realism in training settings. The sights, sounds, and fog of combat can be recreated to include complete realism and improve TCCC outcomes. We also contend that there are other applications of our technology that are beneficial to the US military. We propose that we install a fully functional volumetric video stage at a location of the government’s choice, enabling the government to freely explore other use cases in medical care or broader military operations
Synthetic Training Environment for Multimodal Medical Training (STEM3T)
Project Team: Vcom3D
Award Amount: $1.55M
Project Duration: 21 months
Project Objective: The objective of the proposed project is to develop, demonstrate, and evaluate a framework for authoring, delivering, and obtaining training metrics for coordinated Live, Virtual, Constructive, and Gaming (LVCG) medical simulations that span the continuum of care from point-of-injury through Role 1, 2, and 3 Medical Training Facilities (MTFs). The framework will include open standards, with supporting open-source reference implementations, that enable the authoring and assessment of patient cases that can be treated, using potentially different simulation modalities, at sequential care and evacuation stages. The simulations can take place at different MTFs that can be tailored to different Services, with varying resources, by learners with differing skill levels and scopes of practice.
AugMedic: Augmented Reality for Adaptive, Effective Learning and Execution of Medical Care
Project Team: Design Interactive
Award Amount: $2.33M
Project Duration: 30 months
Project Objective: Augmented reality (AR) is emerging as a realistic, low-cost immersive solution with great potential in improving and supporting performance of lifesaving resuscitation skills. The AugMedic effort will build upon an existing modular, medical AR prototype that superimposes synthetic imagery onto live patients and/or medical mannequins. AugMedic will focus on classroom Point of Injury (POI) wound training for medical novices.
The work includes system design, development and evaluation. System design requirements will be established to define how the existing system needs to be modified in terms of interface and functional features to support classroom training. An evaluation of hardware will support the selection of the hardware that optimizes capabilities to integrate with a “smart” classroom training system and provides a ruggedized, hands-free head-worn display. The design solution will include the implementation of a collaborative knowledge database to support the integration of other medical training and injury model content and data repositories. The knowledge database will integrate with the AR technology to support the recognition of injury state, the identification of associated medical tasks to be performed or being performed by the user, and to provide AI-driven guidance and adaptations to unique injury situations as well as dynamic user needs. The logic for the performance of lifesaving tasks, such as hemorrhage treatment and needle chest decompression, will be integrated with principles of instructional system design, to ensure effective learning and effective comprehension and execution of resuscitation skills. Bi-directional communication, between user and system, will allow real-time human-machine interactions in which user support may be (auto) adaptive to factors such as the environment, patient state, and user state; for example, providing prompts based on the performance quality of user interventions, telemetry captured on patient state, or the availability of expertise via telemedicine. The prototype system will be evaluated to determine the efficacy of interface, functional, and instructional features and to leverage findings for the refinement of the system to optimize user experience and performance.
Mobile Stress and Anger management Tool (MSAT) Expansion and Evaluation
Project Team: Design Interactive
Award Amount: $1.92M
Project Duration: 24 months
Project Objective: Concern has been raised over the prevalence of behavioral health disorders in military personnel returning from deployment to the Middle East. While not appearing as an overt physical injury, disruptions of a psychological nature are often as debilitating, and present with a variety of symptoms. Approximately 1/3 of combat Veterans returning from Iraq and Afghanistan suffer from post-traumatic stress disorder (PTSD), depression, traumatic brain injury (TBI), or a comorbid condition. Anger, hostility, and aggression have been associated with PTSD and sub-threshold PTSD (some symptoms of PTSD but not all required for a clinical diagnosis), which in turn have been associated with alcoholism, depression, poor overall health, and increased suicidality. Given the prevalence of PTSD, depression, and TBI, and the associated effects on anger and aggression, combined with fiscal constraints, there is an increasing need for support tools. Such tools should allow for standardized tracking, monitoring, and mitigation of anger and stress outside of face-to-face treatment and enhance the overall treatment plan for individuals struggling with psychological health issues. The proposed effort aims to enhance and evaluate such a tool, the Mobile Stress and Anger management Tool (MSAT), consisting of a wearable sensor to detect stress, a user application to provide stress alerts and mitigation guidance, a secure cloud server to store and transfer data, and a provider portal to allow for provider review and communication. Design Interactive Inc. (DI) will adapt and broaden the MSAT tool based on provider and patient feedback and recommendations, and conduct a full, multi-site clinical trial with active-duty service members. Specifically, in an effort to develop and test tools capable of mitigating risk and increasing deployability, DI will integrate support for assessment of sleepiness/fatigue to the MSAT tool in addition to the current stress algorithms, develop and integrate support for passive digital phenotypes of stress, leveraging features derived from a mobile device, and expand application support for communicating risk to a wider support network, such as physicians or peers.
Mobile System for Trauma Assessment Training (MSTAT)
Project Team: Charles River Analytics
Award Amount: $0.96M
Project Duration: 22 months
Project Objective: To ensure trainees are as prepared as possible, trauma assessment training must bridge the gap from lower-cost classroom instruction to high-fidelity training by employing more-available training options, such as moderate-fidelity virtual environments that can be inexpensive to deploy, yet targeted and effective. Under this effort, we propose to increase the TRL of our research prototype STAT system and make it viable for DoD transition and commercial markets. STAT is currently a prototype that has been informally assessed by independent subject matter experts (SMEs) for usability and promise. Based on feedback, we believe there are four key next steps to enable STAT to achieve the minimum commercial quality necessary for transition to the military and civilian providers. The current application is relatively mature (TRL 5-6) but requires additional effort to deploy it in a form that meets operational needs and settings.
The Effects of Complete and Partial Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) with Pharmacologic Treatment in Swine Models of Hemorrhagic Shock, Traumatic Brain Injury, and Complex Vascular Injuries
Project Team: University of Michigan
Award Amount: $1.81M (additional cost share = $249K)
Project Duration: 37 months
Project Objective: The long-term goal of this project is to provide practical solutions for the control of non-compressible torso hemorrhage. We plan to achieve this objective by combining two innovative strategies to make REBOA more practical for the military and austere use, and by testing these approaches in clinically realistic large animal models. Our expected outcomes are to increase the safe inflation time for zone 1 REBOA balloon by testing technical solutions to overcome the limitations of prolonged aortic occlusion. Our strategies include maintaining partial distal flow by using pREBOA and enhancing the resilience of the ischemic tissues through VPA administration. By prolonging the safe window of occlusion, these refinements will make REBOA a more practical tool for the military and for smaller hospitals that have to transfer their patients to higher levels of care.